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A numerically calculated Green’s function is used to predict jet noise spectrum and its 
far-field directivity.  A linearized form of Lilley’s equation governs the non-causal Green’s 
function of interest, with the non-linear terms on the right hand side identified as the source.   
In this paper, contributions from the so-called self- and shear-noise source terms will be 
discussed.  A Reynolds-averaged Navier-Stokes solution yields the required mean flow as 
well as time- and length-scales of a noise-generating turbulent eddy.  A non-compact source, 
with exponential temporal and spatial functions, is used to describe the turbulence velocity 
correlation tensors. It is shown that while an exact non-causal Green’s function accurately 
predicts the observed shift in the location of the spectrum peak with angle as well as the 
angularity of sound at moderate Mach numbers, at high subsonic and supersonic acoustic 
Mach numbers the polar directivity of radiated sound is not entirely captured by this 
Green’s function.  Results presented for Mach 0.5 and 0.9 isothermal jets, as well as a Mach 
0.8 hot jet conclude that near the peak radiation angle a different source/Green’s function 
convolution integral may be required in order to capture the peak observed directivity of jet 
noise.  

1. Introduction 
HIS paper is motivated by an increasing demand on the aeroacoustics community to achieve new levels of 
accuracy in noise prediction in order to meet the stringent regulations set for aircraft noise reduction.  

Experimental observations of jet noise spectra and angularity for a wide range of shock-free operating conditions 
show that a bi-modal description best fits a typical spectrum.  This has prompted many to propose a two-source 
generation mechanism.  In the mid-angle range, jet noise is usually attributed to small-scale turbulence.  Prediction 
schemes such as MGBK1 or Tam and Auriault2 scale the noise to 7/2 power of turbulence kinetic energy and use a 
Reynolds-averaged Navier-Stokes solution (RANS) to estimate the source strength and its spectral shape.  The 
general shape of the spectrum and its roll-off at the high- and low ends of its frequency range depends on the 
proposed source model as well as the accuracy of the propagation filter, i.e., Green’s Function (GF).  The non-causal 
GF solution of interest may be obtained from the inhomogeneous Lilley’s equation or directly from linearized Euler 
equations using numerical methods or some form of analytical approximation.   

 
The second mechanism for sound generation is commonly attributed to the large-scale turbulent structures, which 
are considered as a superposition of instability modes of the mean flow.  It has been shown that when the base flow 
is properly represented as a non-parallel jet, these waves grow in amplitude and then decay farther downstream.  
They become increasingly more efficient with jet speed, and at small angles from the downstream axis.  A recent 
study3 describes instability waves as a conduit that helps carry the sound from the source region to the far field 
rather than a separate source.  This way, a two-component spectrum may be thought of as contributions from two 
completely different Green’s functions acting on the same source.   

 
The non-causal GF described in the present paper is derived from Lilley’s equation.  A good approximation to 

the base flow that is useful for jets and adopted here is a unidirectional transversely sheared mean flow.  From a 
practical point of view, a locally parallel flow provides added numerical efficiency with minimal degradation in 
accuracy.  Any deviation from a true spreading jet is usually limited to a small angle range close to the jet axis and 
well within the zone of silence where contribution from a causal GF is likely to dominate.   Upon linearizing the 
Navier-Stokes equations about the base flow (for an ideal gas), the nonlinear terms are moved to the right-hand side 
to obtain the inhomogeneous Pridmore-Brown equation4.  The right-hand side terms, all second-order in fluctuating 
variables, are now identified as source.  Fluid viscosity and entropy fluctuations are considered to be relatively 
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unimportant in noise generation and are neglected compared to other source terms.  Two of the three remaining 
sources are quadrupole in nature and are referred to as self- and shear-noise source terms.  The third source has a 
dipole character and is associated with temperature fluctuations.   
 
A physics-based modelling approach usually relies on averaged equations of motion.   Statistical properties of noise 
sources as described by a two-point space-time correlation are entirely modeled.  As such, any deficiency in the 
predictions should directly be linked to the underlying assumptions, i.e., the model functions or, possibly, the mean 
flow itself.  Yet a successful model could prove extremely useful as a potential design tool in concept studies and in 
making trend predictions.   In addition to the source description, the propagation filter needs to be accurate enough 
to capture refraction and shielding of sound for a wide range of frequencies, angles, and operating conditions.  A 
review of some commonly used high-frequency asymptotic forms of the GF following the usual WKB methods and 
comparison with the numerical solution5 demonstrates that these solutions generally remain accurate down to a 
Strouhal number of 0.5.  However, the extension of the WKB solution to the more general jets with multiple turning 
points presents additional challenges and may require a numerical calculation of the near-field solution in order to 
satisfy the matching conditions.    
 

The objective of this paper is to present the details of the source as well as the GF in a physics-based prediction 
approach.  Analytical solution to intensity calculations using an exact GF is given in section 2. Section 3 shows the 
modelling of the two-point velocity correlations using an exponential form to describe both spatial and temporal 
functions.  The general features of the 90o spectrum are addressed in section 4.  A parametric study of the GF using 
a RANS-based mean flow is discussed in section 5.   In particular, it is demonstrated that the mean flow could have 
an amplifying effect on radiated sound at certain observer angles and for certain source locations.  More importantly, 
it is argued that regardless of the source definition used in the convolution integral, a non-causal GF, due to its 
sizable zone of silence, is incapable of capturing the observed directivity of high-speed jets at their peak radiation 
angle.   Sample noise predictions for Mach 0.5, and 0.9 cold jets and a Mach 0.801 hot jet at a temperature ratio of 
3.0 are presented in sections 6 and 7 and compared with data recently collected at the Small Hot Jet Acoustic Rig 
(SHJAR) at the NASA Glenn Research Center.  Some concluding remarks are given in section 8 regarding the near-
term needs for improving a physics-based prediction approach. 

2. The Governing Equation 
Lilley’s third-order wave equation6 may be linearized about a unidirectional transversely sheared mean flow  

 
  p p v U x x T T x xo i i o= = = =constant,  δ 1 2 3 2 3( , ), ( , ) , 
 
and rearranged to a form commonly referred to as the Pridmore-Brown4 equation 
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Here Γ  is the source, 
rx x x x≡ ( , , )1 2 3  are the Cartesian coordinates and x1  is in the stream-wise direction, p is 

pressure (i.e., p p po≡ + ' ), Π ≡ ( / ) ln( / )1 γ p po , oRTc γ=2 is the mean sound speed, and the convective 
derivative operator is  
   

  
D
Dt t

U
x

≡
∂
∂

+
∂
∂ 1

. 

 
When pressure fluctuations p' are small relative to mean pressure po , the dependent variable is approximated 
asΠ ≅ p po'/( )γ .  Goldstein7,8 carried out a second-order expansion of Eq. (1) and introduced a new dependent 

variable π ' /≡ +Π Π2 2 to show that  
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where u v Ui i i≡ −δ 1 denotes the velocity fluctuations.  The source term (3) may be approximated as 

f u u xi i j j≅ ∂ ∂( ) /  once fluctuations in sound speed ( )' ( )c R T To
2 = −γ  are neglected (a valid approximation 

when jet is isothermal).  With the dependent variable approximated asπ '≅ Π  (see Ref. 9 for the equation 
governingΠ2 ), Eq. (2) becomes  
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The analysis presented here-on is based on Eq. (4).  The two terms on the right side of the above equation are 
referred to as self- and shear-noise source terms, respectively. 

 
2.1  Green’s Function 

A stationary point source with frequency ω  and location
rx s  (superscript s denotes a source location) is 

considered in defining the GF  
 

  L e c e x xi t i t s( ) ( )G −
∞

−= −ω ω δ2 r r
.                       (5) 

 
Using an adjoint method10, the far-field GF is given as 
 

  G( , , ) ( , , ) cos ( )( cos )r rx x
R

e f r k ms ik R x
m

s s

m

s

ω
πω

θ ϕ ϕθ= −−

=

∞

∑1
4

1

0

,             (6) 

 
where ( , , )R θ ϕ are the observer spherical coordinates, with radius R measured from jet exit centerline, polar 
angleθ  measured from stream-wise jet axis, and azimuthal angleϕ  is measured in a span-wise plane.  Wave 
number is defined as k c= ∞ω / and r R≡ sinθ .   Function f r km( , , )θ  is a solution to the second-order 
compressible Rayleigh operator subject to appropriate matching conditions at the jet boundary.  The linear operator 
L also supports instability waves, which for a jet are the well- known Kelvin-Helmholtz instabilities.  Reference 11 
argues that these waves are suppressed if the governing equations are solved in a frequency domain and if a time-
harmonic response is assumed. 
 
For a source type D Dt c e x xi t s/ [ ( )]∞

− −2 ω δ r r
, representative of the self-noise term in (4), the GF is denoted as $G , 

and is related to G as $ ( / )G G= − + ∂ ∂i U xsω 1 , which upon using (6) becomes 
 
  $ ( cos )G G= − −i M sω θ1 .                        (7) 

Here M U r cs s≡ ∞( ) / is the acoustic Mach number at the source location. 
 
The GF of interest in jet noise is associated with a moving singularity with source frequencyω s  and convection 
velocity $i Uc .  For self-noise we write 

  L Ge D
Dt

c e x U t x xi t i t
c t t

ss

( ) { ( ) ( )}−
∞

−= − −ω ω δ δ2
1

r r
.                 (8) 
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Subscript t denotes a transverse location.  The above GF is derived from (7) and a convolution integral as  
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2 1G .      (9) 

Integrating with respect toτ and
ryt  yields 
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Using $G  from (7) and (6) into (10) and invoking the parallel flow assumption; the integration with respect to y1  
yields a delta function 
 

  e e dy
U
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c
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s
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1
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where M U cc c= ∞/ is the convection Mach number.   
 
Placing (11) in (10), the integration with respect toω  is readily carried out 
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Upon relating source and observer frequencies through the Doppler factor 
 

  ω ω
θ

=
−

s

cM1 cos
,                         (13) 

 
the GF to Eq. (8) becomes 
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Equation (14) indicates that the adjoint equation should be solved at the observer frequency even though the 

source is moving.   In addition, it illustrates that for a convecting type source, the dependence of the GF on the axial 
source location is purely implicit, i.e., through the flow definition at the jet slice.  Once the adjoint equation is solved 
for given values of observer angleθ , Strouhal number St, and mode number m, function fm  should be known at any 

arbitrary source locations r s on the jet slice.  Strouhal number is defined using exit diameter and jet exit 
velocitySt D UJ= ω π/ ( )2 . 

 
2.2  Multi-Pole Sources 

The far-field spectral density may be expressed as integration with respect to the source volume
ry of sound spectral 

density per unit volume of turbulence 

p x y G x y G x y R y e d di2 2 2( , , ) ( , / , ) ( , / , ) ( , , )*r r r r r r r r r r r

r
ω ξ ω ξ ω ξ τ τ ξωτ

ξ

= − +
−∞

+∞zz .       (15) 
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Here R y( , , )r rξ τ  denotes a two-point fourth-order space-time correlation between source points 
r r r
y y1 2= −ξ /  and 

r r r
y y2 2= +ξ / separated by timeτ and space

r
ξ .  In a compact eddy approximation, the variation of the GF within 

the source region is usually neglected and the product GG*  is approximated as square of the magnitude of the GF at 
the center of the correlation

ry , and taken out of the above integral.  The phase variation in the GF, however, could 
become a factor at high frequency when the eddy length scale exceeds the acoustic wavelength.  The complex 
function fm  appearing in the series summation of Eq. (14) contains the phase information of the GF.   To simplify 
the analysis, a form of the phase factor applicable in the high frequency limit is used here  

p x y G x y e R y e d dik i2 2( , , ) ( , , ) ( , , ).r r r r r r rr r

r
ω ω ξ τ τ ξξ ωτ

ξ

= −

−∞

+∞zz .              (16) 

The above double integral, referred to as the wave-number frequency spectrum, may be expressed either in a fixed or a moving 
frame. In a convecting frame, 

r r
ξ ξ τm ci U= − $ , and  R y R ym m( , , ) ( , , )r r r rξ τ ξ τ= , hence 

 

  e d R y e d e d R y e di i k i
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A spectral coefficient for a two-point fourth-order correlation of stress component u ui j  at points 

ry  and 
ry ' is defined as (prime 

designates separation in space and time) 
 

  I y u u u u e e d dijkl
s

i j k l
ik i

m
m

s

m

( , ) ( )( )' ' .r rr r
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ω τ ξξ ω τ
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−zz ,              (18) 

and over-bar points to a time-averaged quantity.  Equation (18) was written in a moving frame according to the 
right-hand side of (17).  Presence of double derivatives operating on the source terms of equation (4) indicates that 
the appropriate GF should ultimately be calculated for a singularity type 
 

  
D
Dt

c
x x

e x U t x x Q
i j

i t
c t t

s
ij

s

{ ( ) ( ) }∞
−∂
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− −2

2

1
ω δ δ r r

.                (19) 

 
The analysis may be carried out as described in the convolution integral leading to Eq. (9).  However, the source 
spatial derivatives are now moved to the GF prior to

ry integration.  For example, an application of ∂ ∂ ∂2
1 1/ y y  to 

$ ( , ; )G
r rx y ω  in the integrand of Eq. (9) generates ( cos )−ik θ 2 as seen from Eq. (6).  Subsequently, 

( cos )k θ 4 multiplies sound intensity due to source correlation ( )( )' 'u u u u1 1 1 1 .  A derivative of $G with respect to the 

span-wise source coordinates y2 or y3 , acts on f r k mm
s s( , , ) cos ( )θ ϕ ϕ− . The algebra is quite lengthy but 

relatively straightforward.  It may be shown that to the first order of approximation, quadrupoles of self noise, once 
integrated azimuthally for a ring volume within an axisymmetric jet, relate to the axial component I1111.  For an 
isotropic turbulence the result simplifies  
 
  ( cos ) ( )1 4 2 4

1111− M k Is sθ ρ .                      (20) 
 

This, in view of (14), leads to the following expression for the sound spectral density per unit ring volume at 
radius rs  

  p x y
R

M
M

I k f r kself
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s

m
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2
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2
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1111
4 21

4
1
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 The above result is integrated over jet volume elements that radiate directly to the far field.  Noise from sources 
internal to the jet requires special treatment due to reflection from solid boundaries.  Goldstein and Leib12 give an 
approximate high-frequency solution for sound emission due to internal mixing. 
 
It will be shown in Sec. 7 that Eq. (14) scales likeρ1 2/ with jet density, hence sound spectral density in Eq. (21) 
scales withρ3. 
 

3.  Source Model 
For simplicity we consider isotropic turbulence.  The axial correlation coefficient needed in Eq. (21) is obtained 

from (18) when all indices are set equal to one.  Using the usual quasi-normal approximation for the joint probability 
distribution of turbulence, a fourth-order correlation is written as a product of second-order tensors.  In addition, a 
second-order correlation is written in a separable form  
 
  u u R hi j ij

' ( , ) ( ) ( )
r r
ξ τ ξ τ=  .                      (22) 

 
Appropriate modelling of a two-point velocity correlation is a crucial step in a physics-based prediction approach.  
For reasons discussed in Ref. 1 as supported by measurements13,14, exponential functions are selected here to 
represent both spatial and temporal dependencies of the correlation 
 
  f e h em

m o( ) , ( )/ /ξ τπξ τ τ≡ ≡− −l .                    (23) 
 
In (23), ξ ξm m≡| |

r
 is measured in a moving frame, and is equivalent to [( ) ] /ξ τ ξ ξ1

2
2
2

3
2 1 2− + +Uc if used in a fixed 

frame, and f is the scalar function that appears in the isotropic from of Rij. Parameters l and τ o denote the length- 
and time-scales of the correlation  
 
  l l≡ ≡c coκ ε τ κ ετ

3 2/ / , / .                     (24) 
 
Turbulence kinetic energy κ and its dissipation rateε are usually provided through a RANS type solution and 
( , )c cl τ  represent a pair of calibration constants. 
 
Using (22) in (18) shows that 
  I y H R e ds s

m
ik

m

m

m
1111 11

22( , ) ( ) ( ) ,.ω ω ξ ξ
ξ

ξ= z −

r

r rr r
                 (25)

  H h e ds i s

( ) ( )ω τ τω τ≡
−∞

+∞z 2 .                      (26) 

   

Upon representing R m11( )
r
ξ  according to the homogeneous isotropic model of Batchelor15 with f as defined in (23), 

it is shown1 that  

  I y u H N ks s
1111 2 1

2 2 34
5

( , ) ( ) ( ) ( )r
l lω

π
ω= .                  (27) 

Here N k( )l  denotes a non-compactness factor (Appendix A), which appears in the analysis due to the phase 
variation of the GF.  As was discussed in Ref. 1, N k( )l remains equal to 1.0 when 0 2≤ <kl π , and decays 
rapidly as the eddy length-scale exceeds the wave-length of acoustic disturbances (i.e., kl > 2π ).   
 

Integrating Eq. (26) in conjunction with (23) results in   

H s o
s

o

( )
( / )

ω τ
ω τ

=
+1 2 2 .                      (28) 
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Upon using (24) and (28) in (27) and replacing u1
2 with 2 3κ /   

  I y c
c

N ks o
s

o
1111 2

3 7 2
4

2

16
45 1 2

( , ) ( )
( / )

( )/r
llω

π
κ τ

ω ττ

=
+

.             (29) 

 
Eq. (29) shows that sound intensity scales withκ 7 2/ . A third calibration constant Am should multiply Eq. (29) to 
account for the fraction of turbulence kinetic energy converted to sound.   This factor is combined with other 
constants preceding κ 7 2/  

  I y A N ks
m

o
s

o
1111

7 2
4

21 2
( , )

( / )
( )/r
lω κ τ

ω τ
=

+
.                (30) 

Eq. (21) in conjunction with (30) is integrated over the jet volume (all rings within each slice) to calculate the far-
field sound due to self-noise sources.   
 

The appropriate GF for shear-noise source term is similar to Eq. (14), but divided by ω θ( cos )1− M s .  
Once the variations in dU dr/  within the source correlation volume are neglected, the shear-noise spectral density 
due to a unit ring volume may be approximated as  
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       (31) 

This expression remains small at and near mid angles; however it generates significant directivity away from 90o as 
opposed to the self-noise spectrum, which is more omni-directional.   
The coupling between self- and shear-noise terms is neglected in the following predictions. 
 

4.  Spectrum Function 
The spectrum at 90o, also referred to as the master spectrum, is derived from product k H N k4 ( ) ( )ω l  as seen 

from Eqs. (21) and (30).  It takes the following form once turbulence correlation is modeled according to (23) 
 

  F N ko
o

o

( ) ( )
( / )

( )ωτ ωτ
ωτ

≡
+

4

21 2
l .                    (32) 

 
In the absence of factorN k( )l , function F o( )ωτ  becomes infinite like ω 2asω →∞ .  On the other hand, with 
increasing ω  the phase variation in the GF becomes increasingly significant as the eddy correlation length exceeds 
the acoustic wavelength.  Thus spectral function F o( )ωτ  decays at large frequency once factorN k( )l  is included 
(figure 1).  This practically amounts to limited self-cancellation of high wave-number components of noise within 
the correlation.  Also shown in this figure is the 90o spectrum function as calculated with temporal function 

h o( ) exp[ ( / ) ( / ) ]τ σ τ τ≡ − +2 2 2 .  Proper selection of small constant σ  would assure high-frequency decay even 
with factor N k( )l  selected as 1.0; however the spectrum becomes narrower.  A Gaussian temporal function 
exp( / )−τ τ2 2

o  generates a relatively narrow spectral range due to its steep roll-off at high frequency and may not be 
a suitable model for jet noise prediction. 
 

5.  Numerical Evaluation of the Green’s Function 
 In this section numerical calculation to the GF is presented for a range of parameters of common interest in jet 
noise prediction.  A careful study of this non-causal GF and its association with the source location, frequency, and 
jet speed provides valuable insight into its contribution towards a total solution. 
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Equation (14), once normalized with respect to its free-space value, is integrated azimuthally to define ring source 
directivity 
 

  D x x R G x x ds s s2
2 2

4
2

( , , ) ( ) ( , , )r r r rω π
π

ω ϕ
π

π

≡
−

+z .                 (33) 

Both stationary and convecting type sources are considered.  Source convection velocity is defined as a weighted 
average of local and exit velocities according to 
 
  U U Uc j= +0 50 0 25. . .                       (34) 
 
Alternative expressions16 for Uc based on local, exit, and ambient jet velocities are available and could readily be 
tested.  When the denominator of Eq. (14) becomes singular, the usual Ffowcs-Williams17 correction is applied. 
 
Mean flow predictions (RANS) were generated for a Mach 0.90 cold jet using WIND18 flow solver available at the 
NASA Glenn Research Center.  Source location 

ry  is identified through the ring radius rs and its distance from jet 
exit xs

1 . 
 
Directivity D for a stationary ring source at one diameter from jet exit, and for selected values of St from 0.10 to 5.0 
is shown in figures 2a through 2d.    It is observed that sources in the proximity of the jet centerline produce a larger 
directivity.  The zone of silence grows noticeably in size with increasing frequency as expected.  Figures 2c and 2d 
show that zone of silence may grow as large as 60o (relative to the jet axis) for the more energetic segments of the 
jet, i.e., the jet mixing layer.  Figures 3a through 3d use the flow definition at xs

1 =7.5D to highlight the significance 
of the jet profile on sound refraction.   It is noted that source strength should ultimately multiply the GF when 
calculating the actual sound spectrum.  
 
Source convection is known to amplify the radiated sound in the mean flow direction.  This is illustrated in figures 4 
and 5, which should be compared with the figures 2b and 3b for similar stationary sources. 
 

6.  Acoustic Results 
Far-field spectra for Mach 0.50 and 0.90 cold jets were predicted on an arc R/D = 100, and compared with 

SHJAR data recently acquired at the NASA Glenn Research Center.   Atmospheric attenuation has been removed 
from all measurements in order to make a lossless comparison with predictions.  RANS solutions for the 2” diameter 
convergent nozzles were generated using the in-house WIND code with a standard kε  turbulence model.  Upstream 
nozzle conditions were specified in terms of plenum temperature ratio Tr and the pressure ratio. 
 
Calibration constants c cτ , l  (see Eq. 24) and Am (see Eq. 30) were set as 0.1846, 2.9430 and 1.2946 respectively.  

The argument of the non-compactness factor k c c col l= ∞( / )( )( / ).
τ ωτ κ 0 5  is found to work better for a wide range 

of Mach numbers when divided by the local acoustic Mach number U r cs( ) / ∞ . 
Figure 6 shows the spectra for Mach 0.50 cold jet at selected inlet angles.  Self noise as well as total noise (i.e., self 
+ shear) are plotted separately at each angle. Factor ( cos )1 6− M s θ in the numerator of Eq. (21) works to produce 
an omni-directional appearance for self noise.  The shift in spectral peak with angle shows good agreement with 
data.  This behavior is primarily caused by the mean flow effect and is captured by the GF.   Figure 7 shows similar 
comparisons for a Mach 0.90 cold jet.  The agreements are generally very good, both in level as well as the spectral 
peak location.   
 
Near the dominant radiation angle of the Mach 0.90 jet, differences start to emerge.  The data points to a distinct 
spectral peak near 150o inlet angle and at the Strouhal number of 0.20.  It is suggested here that this peak is quite 
possibly influenced by the Kelvin-Helmhotz instabilities, which manifest themselves at high subsonic and 
supersonic Mach numbers.  These waves dominate the distinct directivity of high speed jet noise at shallow angles, 
and their peak radiation frequency is sometimes scaled with Helmholtz number ( He f D c≡ ∞/ ).  As we will see 
shortly, addition of heat enhances this peak as the acoustic Mach number exceeds 1.0. 
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7.  Hot Jets 
An increase in the acoustic Mach number due to heat may cause the factor (1− M s cosθ ), appearing in the 

denominator in the adjoint Lilley equation, to become singular.  The numerical integration should now continue 
along an appropriate path in the complex plane, and around the singularity10.  A better illustration of the GF is, 
perhaps, given through  
 
  Λ( , , ) ( cos )( / ) ( , , ).r r r rx x M D x xs s s sω θ ρ ρ ω≡ − ∞

−1 0 5               (35) 
 
where D2 was defined in Eq. (33).  The appearance of the density factor in Eq. (35) serves to demonstrate that the 
GF scales with the square root of density at moderate to high frequency.  This is examined by observing the 
behavior of the GF at 90o.   
 
Shown in figures 8a and 8b are the GF for a stationary ring source within a Mach 0.90 hot jet at a temperature ratio 
of Tr = 2.78.  At this temperature the acoustic Mach number is supersonic (i.e., U c/ .∞= 145).  Inspection of the GF 
at θ = 90o  and at St = 0.10 shows some dispersion with source location (see Fig. 8a).  Figure 8b shows that the 
above density scaling is successful at St = 1.0.  More importantly, this figure demonstrates that at mid- to high 
frequency, the GF in Eq. (14) scales like ( cos )1 1− −M s θ  outside its zone of silence 
 
It is also evident that, compared to a Mach 0.90 cold jet, the zone of silence has grown in size irrespective of the 
frequency (see figures 3a and 8a).  The implications are that the above GF is not going to provide the required noise 
directivity near the peak radiation angle. 
 
Figures 9a and 9b show similar results for a convecting ring source. 
  
Figure 10 shows the jet noise spectrum at 90o for a 2” diameter, Mach 0.801, Tr =3.0 hot jet as calculated using an 
exact GF as well as a density-scaled GF (i.e., GF is simply set equal to ρ ρ1 2 1 2/ // ∞ ).  The difference is fairly small and 
limited to the low frequency range. 
 
The far-field spectra at R/D = 100 for this jet is also compared with recent SHJAR data as seen in figure 11.  Let’s 
consider the 90o spectrum, which stands 3 to 8 dB below measurements.  This spectrum is entirely defined through 
Eq. (21) withθ = 90o .  The preceding arguments demonstrate that sound spectral density scales likeρ3 , in addition 
to the usual κ 7 2/ scaling.  This implies that the mean density reductions caused by heat addition should be 
compensated for by a boost in turbulence in order to reach the required noise level.  Choices available are quite 
clear:  (a) additional noise sources due to heat; (b) adequate increase in turbulence level from heat; or some 
combination of (a) and (b). 
 
Lighthill’s formulation of the acoustic analogy shows that in the absence of the viscous stress tensor, source consists 
of an additional term( ' ' )p c− ∞

2ρ .  Once entropy fluctuations are neglected this becomes ( ) 'c c2 2− ∞ ρ  which is not 
necessarily small compared to terms usually kept in the equation.   Unfortunatelyρ'  now appears on both sides of 
the equation.  Other forms of the analogy have tried, for example, new definitions for the dependent variable, in an 
effort to curtail the impact of those inconvenient terms that are usually neglected.  In the current formulation, it is 
argued7 that the second term on the right hand side of Eq. (3) is of the order of ( / ) ( / )U c u2 2 l  relative to the first 
term that scales like ( / )u2 l .  For the present hot jet, the second term has a magnitude of 0.64 compared to the first, 
which makes it relatively significant.  Modelling of this term, however, poses new difficulties due to the appearance 
of p' in the source. 
 
In the latest formulation of the acoustic analogy, Goldstein19 selects a new dependent variable, referred to as the 
generalized pressure, and writes the third-order wave equation in a form that does not include the dependent variable 
as part of the source. 
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Tam et.al20 modified their kε  turbulence model in order to improve their fine-scale predictions for hot jets.  They 
proposed a new addition to the turbulent viscosity, as related to the mean density gradient, which accounts for 
enhanced mixing and increased growth of the shear layer when jets are hot.  More recently21, they modified their 
two-point space-time correlation model to increase its decay rate for hot jets.  This new model, which takes 
advantage of four additional empirical parameters, provides improved prediction for hot jets at mid-angles. 
 
Prediction of figure 11 defines turbulent viscosity18 asν κ εµt c= 2/ , where cµ = 0 09. .  Shown in figure 12a is the 
predicted turbulence kinetic energy for the hot jet and comparison with the Particle Image Velocimetry (PIV) 
measurements14.  Data clearly indicates a faster mixing as seen by the shorter core length and higher concentration 
of turbulence at the end of the core.  A similar comparison for the Mach 0.90 cold jet (figure 12b) demonstrates 
better agreement, both in the length of the potential core as well as turbulence.  It is quite likely that some form of 
modification to the two-equation turbulence model22 could promote shear layer mixing at high temperatures and 
produce additional turbulence to improve our hot jet predictions at 90o and the nearby angles.  In the vicinity of the 
peak radiation angle, instability related noise quickly overwhelms the hot jet solution as suggested by figure 11.    
  

8.  Concluding Remarks 
This paper details some important features of the source as well as the propagation Green’s function in a 

physics-based jet noise prediction methodology.   A careful examination of the propagation filter in a locally parallel 
flow shows that the zone of silence grows increasingly large with jet velocity.  It could encompass a sizeable region 
near the downstream jet axis as the acoustic Mach number becomes supersonic.  Although non-parallel effects are 
known to reduce the low-frequency descent rate into the zone of silence10, it is unlikely that at the peak directivity 
angle this Green’s function could capture all contributions to the overall noise of high-subsonic or supersonic jets.  
A parallel flow assumption is expected to provide reliable prediction near the sideline angles, and to become 
effective in a broader angle range at lower jet speeds.   The instability related noise, therefore, becomes the 
dominant source of jet noise in the vicinity of its peak radiation angle as the acoustic Mach number grows 
supersonic.   
 
Our hot jet prediction confirms the need for some form of enhanced mixing or recalibration of the usual two-
equation turbulence model for heated jets. However, the source term associated with temperature fluctuations in Eq. 
(3) remains a point of contention.   The non-unique quality of the source in any analogy-type argument indicates that 
it might not be necessary to seek new sources to compensate for possible weaknesses in a RANS solution or the 
model representation of a two-point correlation. 
  
 

Appendix A.  Phase Variation of the Green’s Function 
When wavelength of the acoustic disturbances is small relative to the correlation length scale (i.e., λ < l), it is 

shown1 that the axial correlation coefficient I1111  (defined in Eq. 25) consists of a non-compactness factorN k( )l  at 
high frequency.  For example, when turbulence is isotropic, this factor becomes  
 

 N k
k

k k
k

k
f e( ) ( ) [ tan ( )

( )

( )
], ( ) /l

l

l l
l

l

l= −
+

+F
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I
KJ

=− −20 3
2

2
5 12

4

5 1

2

2
2

π
π π

π

π

ξ πξfor ,       (A1) 
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2 2
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π
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Fig. 1  Spectral shape function at 90o  with temporal function defined as:  
exp( / )− τ τ o , solid line; exp{ ( . / ) }.− +0 42 2 2 0 50τ τ o , dash-dot; exp( / )−τ τ2 2

o , dashed line. 
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Fig. 2a   Directivity D x x s( , , )
r r

ω  due to a stationary  
ring source within a Mach 0.9 cold jet at St = 010. , 
x Ds

1 / = 1.0 and r Ds / : 0.0 (solid line); 0.50 (dashed 
line); 1.0 (dash-dot). 
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Fig. 2b   As figure 2a but for St = 0.25. 

Fig. 2c   As figure 2a but for St = 1.0. 
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Fig. 2d   As figure 2a but for St = 5.0. 
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Fig. 3a   Directivity D x x s( , , )
r r

ω  due to a stationary 
ring source within a Mach 0.9 cold jet at St = 010. , 
x Ds

1 / = 7.5 and r Ds / : 0.0 (solid line); 0.50 (dashed 
line); 2.0 (dash-dot). 
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Fig. 3b   As figure 3a but for St = 0.25. 
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Fig. 3c   As figure 3a but for St =1.0. 

Fig. 3d   As figure 3a but for St =5.0. 

Fig. 4   Directivity D x x s( , , )
r r

ω  due to a convecting ring 
source within a Mach 0.9 cold jet at observer St = 0.25, 
x Ds

1 / =1.0 and r Ds / : 0.0 (solid line); 0.50 (dashed line); 
1.0 (dash-dot). 
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Fig. 5   As figure 4 but for a ring source at x Ds

1 / =7.5 
and r Ds / : 0.0 (solid line); 0.50 (dashed line); 2.0 
(dash-dot). 
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Fig. 7  Far field spectra for Mach 0.90, Tr =1.0 jet at 
indicated inlet angles and at R/D = 100.  Self noise 
(dash-dot); Self + Shear noise (dashed line); data 
(solid line).   

Fig. 6  Far field spectra for Mach 0.50, Tr =1.0 jet at 
indicated inlet angles and at R/D = 100.  Self noise 
(dash-dot); Self + Shear noise (dashed line); data 
(solid line).   
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Fig. 9a   As figure 8a but for a convecting ring 
source at observer St = 0.10. 
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Fig. 9b   As figure 8a but for a convecting ring 
source at observer St = 1.0. 

θ
0 30 60 90 120 150 180

1

2

3
4
5

Fig. 8a   Directivity Λ( , , )
r r
x x s ω  due to a stationary 

ring source within Mach 0.9, Tr=2.78 jet at St = 0.10, 
x Ds

1 / =7.5 and r Ds / : 0.0 (solid line); 0.50 (dashed 
line); 2.0 (dash-dot). 
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Fig. 8b   As figure 8a but for a stationary ring source 
at St = 1.0. 

Fig. 10  Far field 90o spectrum for Mach 0.801, 
Tr =3.0 jet.  Exact Green’s function (solid line); 
density-scaled GF (dashed line). 
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Fig. 11  Far field spectra for Mach 0.801, Tr =3.0 jet 
at indicated inlet angles and at R/D = 100.  Self noise 
(dash-dot); Self + Shear noise (dashed line); data 
(solid line).   
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Fig. 12b  Distribution of turbulence kinetic energy.  Top, RANS prediction for Mach 0.90, Tr = 1.0 jet;  
bottom, PIV measurements for Mach 0.98, Tr = 1.0 jet.  

Fig. 12a  Distribution of turbulence kinetic energy.  Top, RANS prediction for Mach 0.801, Tr = 3.0 
hot jet; bottom, PIV measurements for Mach 0.90, Tr = 3.14 hot jet.  
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used to describe the turbulence velocity correlation tensors. It is shown that while an exact non-causal Green’s function
accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound
at moderate Mach numbers, at high subsonic and supersonic acoustic Mach numbers the polar directivity of radiated
sound is not entirely captured by this Green’s function. Results presented for Mach 0.5 and 0.9 isothermal jets, as well
as a Mach 0.8 hot jet conclude that near the peak radiation angle a different source/Green’s function convolution integral
may be required in order to capture the peak observed directivity of jet noise.






